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singularities in viscous �ow predictions
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SUMMARY

A combined analytical–numerical method based on a matching asymptotic algorithm is proposed for
treating angular (sharp corner or wedge) singularities in the numerical solution of the Navier–Stokes
equations. We adopt an asymptotic solution for the local �ow around the angular points based on the
Stokes �ow approximation and a numerical solution for the global �ow outside the singular regions
using a �nite-volume method. The coe�cients involved in the analytical solution are iteratively updated
by matching both solutions in a small region where the Stokes �ow approximation holds. Moreover, an
error analysis is derived for this method, which serves as a guideline for the practical implementation.
The present method is applied to treat the leading-edge singularity of a semi-in�nite plate. The e�ect
of various in�uencing factors related to the implementation are evaluated with the help of numerical
experiments. The investigation showed that the accuracy of the numerical solution for the �ow around
the leading edge can be signi�cantly improved with the present method. The results of the numerical ex-
periments support the error analysis and show the desired properties of the new algorithm, i.e. accuracy,
robustness and e�ciency. Based on the numerical results for the leading-edge singularity, the validity
of various classical approximate models for the �ow, such as the Stokes approximation, the inviscid
�ow model and the boundary layer theory of varying orders are examined. Although the methodology
proposed was evaluated for the leading-edge problem, it is generally applicable to all kinds of angular
singularities and all kinds of �nite-discretization methods. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the presence of angular points (sharp edge or corners) within com-
putational domains can cause serious errors in viscous �ow simulations if a standard �nite
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discretization scheme is applied. The reason is that the exact solution of an elliptic equation,
e.g. the pressure, vorticity and shear stress, can be singular at angular points [1–5]. Hence, the
numerical solution of these quantities diverge in the singular region, which not only causes
additional (local or non-local) numerical errors, but also degrades the rate of convergence
(non-local) or even leads to divergence of the entire numerical solution [4, 6, 7].
Various methods have been proposed or adopted in practice in order to improve the nu-

merical accuracy for problems involving angular singularities. One of them is the conformal
transformation. For example, Botta and Dijkstra [8] successfully applied this technique to
treat the leading-edge singularity of a semi-in�nite plate. Nevertheless, a suitable transfor-
mation is not always available in practice. Moreover, the transformation sometimes results
in ill-conditioned matrices of the discrete equations. As a result, the numerical accuracy and
convergence can be bad. Other methods that are not limited to some speci�c geometries
can either be classi�ed into purely numerical treatments or combined analytical–numerical
methods. Examples of the former include the local modi�cation of the di�erencing scheme
or boundary condition [9–11], special extrapolation around re-entrant corners [12], local grid
re�nement [13, 14] and adaptive and optimal grid methods [15, 16]. These methods except for
those ad hoc treatments given in Reference [9] are useful in improving the global numerical
accuracy in many cases where the numerical pollution arising from an angular singularity is
locally bounded. Nevertheless, the error has a non-local character for the anti-symmetrical
part of the solution of the Navier–Stokes equations [17], especially when strong convection is
present [12]. Moreover, considering the limitation of the �nite arithmetic in the approximation
of singularities, the numerical results will become progressively worse if the singular locations
are approached. Hence, these methods are not suitable if one is interested in the �ow in the
vicinity of sharp corners or wedges.
As mentioned above an alternative to a purely numerical treatment are combined analytical–

numerical methods requiring appropriate analytical solutions for the vicinity of the singularity.
Asymptotic solutions can be obtained for the local viscous �ow around an angular point under
the Stokes �ow approximation [2, 3]. To solve viscous �ows near an angular point accurately,
a useful method is to incorporate the local solution in the numerical scheme. One of the
examples is the singular element method whose shape functions are based on the local anal-
ysis. This method was applied to treat the stress singularity in die swell problems in Stokes
�ows [6, 7, 18]. Several studies [17, 19, 20] have employed the local asymptotic solution for
the Stokes �ow to overcome the vorticity singularity in the numerical solution of the Navier–
Stokes equations adopting the stream function-vorticity formulation. They assigned the local
asymptotic solution for the Stokes �ow in the neighbourhood of an angular point as the bound-
ary condition for the �ow in the remaining region, which was solved using a �nite-di�erence
scheme. An iterative matching procedure was adopted between both solutions and the coe�-
cients involved in the local solution were iteratively updated. However, the convergence of the
numerical solution using this strategy strongly depends on the implementation. For example,
Ingham et al. [19] assigned the local solution to three grid points closest to the tip of a verti-
cal �at plate and determined the unknown coe�cients of the local solution from the numerical
solution at the adjacent points. They reported that a very small under-relaxation factor has to
be applied in order to achieve convergence. In et al. [20] considered the same problem. They
introduced a sub-zone matching procedure rather than the point matching as in Reference [19]
and achieved robust convergence. The accuracy of the numerical solution was not reported
in both studies. Furthermore, the authors did not perform any analysis of the grid size e�ect
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or the in�uences of several factors related to the implementation, e.g. the number of grid
points assigned to the analytical solution or involved in the matching procedure, the location
of these points, the matching strategy (point matching or zone matching), and the order of
the local expansion. Partly these in�uences are demonstrated by the grid convergence study
of Floryan and Czechowsky [17]. Based on their numerical experiments and a failed test case,
the authors concluded that one must be cautious in using the combined analytical–numerical
strategy, despite the fact that it is well-founded theoretically. Nevertheless, neither this work
nor the other studies known to us can tell how accurate the numerical solution based on the
combined analytical–numerical strategy can be, how to achieve good accuracy, convergence
and e�ciency, how much can the implementation a�ect them or what implementation might
be optimal in accuracy and robustness. Hence in the present work e�orts were made to clarify
the above questions.
Presently, we propose a combined analytical–numerical strategy for treating the pressure

and shear stress singularities in the framework of the primitive variable formulation of the
Navier–Stokes equations and using a �nite-volume discretization for the numerical solution.
The primitive variable method is of advantage over the stream function-vorticity approach for
the possibility of a direct extension to three-dimensional problems though few work except for
that by Ladev�eze and Peyret [21] has explored such a treatment. A formal error analysis was
derived for the method proposed, which shows that the accuracy of the numerical solution
in the critical region can be signi�cantly improved by the combined analytical–numerical
strategy. This analysis can also serve as a guideline for the practical implementation. We
applied this method to treat the leading-edge singularity in a laminar �ow over a semi-in�nite
plate. This problem is of fundamental interest in developing the boundary layer theory. It
is well known that the classical Prandtl–Blasius solution or the higher-order boundary layer
theories represent asymptotic solutions for high Reynolds number, Rex=Ux=�� 1, where x is
the running length starting from the leading edge. Thus, they are not expected to be valid near
the leading edge where Rex ∼O(1). As is discussed in detail in Reference [22], the �ow close
to the leading edge remains unsolved with purely analytical approaches despite a lot of e�orts.
The only result that can be obtained is the local asymptotic solution for Rer → 0 where r is the
radial distance from the singular point [1], which contains coe�cients depending on the remote
�ow outside the range of validity of the local expansion. With the present method, we obtained
an accurate solution for the �ow of interest. Furthermore, systematic numerical experiments
were performed and the e�ect of various in�uencing factors related to the implementation
were evaluated in detail. The results of the numerical experiments support the error analysis
and show the desired properties of the new algorithm, i.e. accuracy, robustness and e�ciency.
Based on the numerical results, the validity of various classical approximate models for the
�ow close to the leading edge such as the Stokes approximation, the inviscid �ow model and
the boundary layer theory of varying orders were examined.

2. THEORETICAL MODEL

2.1. Governing equations

Although the present treatment for angular singularities is generally applicable, it is convenient
to describe it based on a speci�c problem. Let us consider the two-dimensional, steady and
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Figure 1. Schematic diagram of the viscous �ow around the leading edge of a semi-in�nite plate.

laminar �ow of an incompressible Newtonian �uid over a parallel, semi-in�nite �at plate of
vanishing thickness (see Figure 1), the governing equations (Navier–Stokes equations) can be
written in the following non-dimensional form,

∇∗ · Ũ∗ =0 (1)

∇∗ · (Ũ∗Ũ∗) =−∇∗P∗ +∇∗2Ũ∗ (2)

where

Ũ∗=
Ũ
U∞

; P∗=
P − P∞
�U 2∞

(3)

are the velocity vector and the pressure, respectively. The free-stream velocity Uc=U∞ and
the di�usion length scale ‘c= �=U∞ are used as characteristic quantities for the normalization.
As a result, one gets Re=(Uc‘c=�)=1. In addition, the dimensionless co-ordinates have the
physical meaning of a local Reynolds number, i.e. x∗=Rex and y∗=Rey.

2.2. Local expansion around the leading edge

In the vicinity of a sharp wedge or corner where the inertia force is small compared with the
viscous e�ect, namely

‖Ũ∗ · ∇∗Ũ∗‖
‖∇∗2Ũ∗‖ � 1 (4)

the Stokes approximation can be applied. Hence, the momentum equation (2) reduce to

∇∗2Ũ∗=∇∗P∗ (5)

Applying the curl operator (∇∗×) to Equation (5), one obtains a Laplace equation for the
vorticity !∗=(∇∗ × Ũ

∗
)z

∇∗2!∗=0 (6)
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Substituting Equation (6) into the stream-function equation of a Navier–Stokes �ow, i.e.

∇∗2 ∗=−!∗ (7)

leads to the biharmonic equation for the stream function  ∗:

∇∗4 ∗=0 (8)

where  ∗ and !∗ are normalized as  ∗=  =� and !∗=!�=U 2
∞.

Adopting the polar co-ordinate system (r∗; �) (see Figure 1), the no-slip boundary conditions
at the wall are

u∗
r =

1
r∗

@ ∗

@�
=0 and u∗

� =−@ ∗

@r∗ =0; when �=0; 2� (9)

Following Mo�at [2], Equation (8) permits an asymptotic solution by using the eigenvalue
expansion:

 ∗(r∗; �)=  ∗
0 +

n∑
i=1

A�i r
∗�i+1f�i(�) +O(r

∗�n+1+1) (10)

where r∗ is the dimensionless distance from the leading edge and �i¡�i+1 are the eigenvalues,
which are real numbers as required for physical �ows. The eigenvalues are determined by
the boundary conditions at the wall, i.e. Equation (9). Thus they are functions of the angle
at the corner, � (=2� for the leading edge problem). Finite velocities at the leading edge
require that the smallest eigenvalue �1 has to be positive. In addition, since the leading-order
term is dominant, in view of Equation (4) the Stokes approximation is valid only when

Relocal =
‖Ũ∗ · ∇∗Ũ∗‖

‖∇∗2Ũ∗‖ ≈ |A�1 | r∗�1+1 � 1 (11)

Substituting Equation (10) into Equation (8), one obtains the following equation for the
function f�i(�) in the case �i =∈ {−1; 0; 1},

f(4)�i
(�) + [(�i − 1)2 + (�i + 1)2]f′′

�i (�) + (�i + 1)2(�i − 1)2f�i(�)=0 (12)

Correspondingly, the following boundary conditions can be derived from Equation (9) for
f�i(�):

f′
�i(�)=0 and f�i(�)=0; when �=0; � (13)

Under the condition of the present study that the �ow is symmetrical with respect to the
x-axis, the solution of this equation is given by symmetrical bases:

f�i(�)=fs�i(�)∈ {sin[(�i + 1)(� − �)]; sin[(�i − 1)(� − �)]} (14)

which additionally satis�es the conditions fs�i(�)=0 and fs�i
′(�)=0. A general solution proce-

dure of the biharmonic Equation (12) with the boundary conditions (13) leads to the following
result for an eigenvalue:

sin(��)=±� sin(�) (15)

where � is a positive real root of Equation (15), as required for the physical �ow. Substituting
�=2� into Equation (15), one has �= k=2, where k is a positive integer.
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With the additional symmetry condition of the �ow mentioned above, the eigenvalues can
be �nally determined for the Stokes �ow around the leading edge of a semi-in�nite �at plate in
a parallel free stream. A detailed solution procedure of the problem is given in Reference [23].
Here we provide the solutions for the Cartesian velocity components and the pressure, which
were employed for the numerical solution:

U ∗ = A1r∗1=2[ 12 sin(
3
2 �) +

5
2 sin(

1
2�)]

+A2r∗3=2[ 72 sin(
3
2 �) +

3
2 sin(

1
2 �)]

+A3r∗2[6 cos(2�)− 6]

+A4r∗5=2[ 92 sin(
5
2 �)− 5

2 sin(
1
2 �)]

+A5r∗3[6 cos(3�)− 6 cos(�)]

+A6r∗7=2[ 72 sin(
3
2 �)− 11

2 sin(
7
2 �)] + · · · (16)

V ∗ = A1r∗1=2[ 12 cos(
1
2 �)− 1

2 cos(
3
2 �)]

+A2r∗3=2[− 3
2 cos(

1
2 �) +

3
2 cos(

3
2 �)]

+A4r∗5=2[ 52 cos(
5
2 �)− 5

2 cos(
1
2 �)]

+A5r∗3[−2 sin(3�) + 6 sin(�)]

+A6r∗7=2[ 72 cos(
3
2 �)− 7

2 cos(
7
2 �)] + · · · (17)

where the term with r∗2 vanishes in Equation (17).

P∗ =2A1r∗−1=2 sin( 12 �)− 6A2r∗1=2 sin( 12 �)

− 24A3r∗ cos(�)− 10A4r∗3=2 sin( 32 �)

− 24A5r∗2 cos(2�) + 14A6r∗5=2 sin( 52 �) + p0 + · · · (18)

where p0 is a constant depending on the reference pressure of the free stream. Equation (18)
shows that the pressure is singular at the leading edge with the order r∗−1=2. A singularity of
the same order can also be expected in the vorticity !∗, the shear stress �∗

r�, and the local
skin friction (drag coe�cient) of the plate, which is de�ned as

cf=
�w(x∗)
1
2 �U

2∞
=2�∗

w(x
∗)=2

@U ∗

@y∗ (19)
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Substituting Equation (16) into Equation (19), one has

cf=4A1Re−1=2
x + 12A2Re1=2x + 20A4Re3=2x − 28A6Re5=2x + · · · (20)

where Rex= x∗ as shown above. The coe�cients Ai=A�i , (i=1; 6) remain unknown from
the analysis. They have to be determined by matching the local analytical solution (Stokes
equations) to the numerical solution of the outer �ow (Navier–Stokes equations) in the neigh-
bourhood of the leading edge where the Stokes approximation still holds.

3. COMBINED ANALYTICAL–NUMERICAL METHOD

With the help of the local solution, a combined numerical–analytical method based on the
computational matching asymptotic strategy can be constructed. As sketched in Figure 2, the
computational domain is decomposed into three parts, denoted by Stokes region (A), matching
region (B) and Navier–Stokes region (C). The Stokes approximation is assumed to hold in
both regions A and B. Hence the required condition (11) has to be satis�ed in both regions.
The asymptotic solutions (16)–(18) involving unknown coe�cients is prescribed in the Stokes
region (A) for the primitive variables (U ∗; V ∗ and P∗) of the governing Equations (1) and
(2). A �nite-volume scheme as described in Section 4 is applied for the numerical solution of
the �ow in the rest of the computational domain (B and C). Since the Stokes approximation
holds in the �ow region B, solutions (16)–(18) obtained from the local analysis are expected
to match the numerical solution of the Navier–Stokes equations in this region. As a result, the
unknown coe�cients involved in the local asymptotic solutions (16)–(18) can be determined.
The least-square method is employed to calculate the unknown coe�cients. Without loss

of generality, the local solution for a dependent variable can be expressed as

�anal(r∗
i ; �i)= c0 +

m∑
k=1

A�k g�k (r
∗
i ; �i) + · · · (21)

where c0 is employed to represent a constant and g�k (r
∗
i ; �i) is a representative for the func-

tions appearing in Equations (16)–(18). Matching this solution to the corresponding value

U

B. Matching region, where Stokes solution = Navier−Stokes solution

B
C C

A. Stokes region, analytical solution with unknown coefficients

C. Navier−Stokes region, where Stokes equation becomes invalid

oo

A

Figure 2. A sketch of the decomposition of the computational domain for the
matching asymptotic solution.
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computed from the global numerical scheme, �num(r∗
i ; �i), leads to the following equation:

c0 +
m∑

k=1
A�k g�k (r

∗
i ; �i)=�num(r∗

i ; �i); i=1 : : : n (22)

where i and n are the indices and the total number of the control volumes involved in the
matching procedure, respectively.
Equation (22) can be expressed in a matrix form:

Bn;mAm=Gn (23)

where A=(A�1 ; A�2 ; : : : ; A�m)
T is the unknown matrix, B is de�ned by Bi; k = g�k (r

∗
i ; �i), and

G=(�num(r∗
1 ; �1)− c0; �num(r∗

2 ; �2)− c0; : : : ; �num(r∗
n ; �n)− c0)T.

Multiplying both sides of Equation (23) with BT from the left leads to the following
equation for the unknown coe�cients:

Cm;mAm=Dm (24)

where

Cm;m=BTn;mBn;m or Cj; k =
n∑

i=1
g�j(r

∗
i ; �i)g�k (r

∗
i ; �i) (25)

and

Dm=BTn;mGn or Dj=
n∑

i=1
g�j(r

∗
i ; �i)[�

num(r∗
i ; �i)− c0] (26)

Equation (24) combined with Equations (25) and (26) is a formulation for the least-square
calculation of the unknown coe�cients involved in the local solution (21). Since B is known
from the co-ordinates of the matching points and G from the global numerical solution, C and
D can be calculated. Therefore, the coe�cients of the local solution, A�k (k=1; : : : ; m), can
be determined by solving Equation (24). Then the constant c0 can also be calculated using
the same method:

c0 =
1
n

n∑
i=1

[
�num(r∗

i ; �i)−
m∑

k=1
A�k g�k (r

∗
i ; �i)

]
(27)

For the leading-edge problem, one has c0 = 0 in Equation (21) if �=U ∗ or V ∗, considering
the no-slip condition at the plate wall. Hence only c0 =p0 needs to be determined for the
variable P∗ [see Equation (18)]. This value is passive in the computation if U ∗ or V ∗ is
chosen as the matching variable, since it does not have any in�uence on the results of A�k .
Only in the case when A�k (k=1 : : : m) are calculated from a matching procedure based on
P∗ does p0 have an e�ect on the coe�cients.
The matching procedure described above is incorporated in the iterative numerical algorithm

for the global �ow (refer to Section 4). Since the numerical scheme is not applied to region A,
the local asymptotic solution prescribed there is equivalent to providing a boundary condition
for the numerical solution of the remaining computational domain (B and C). Hence in the
practical implementation, the local solution for the velocities (16) and (17) are applied only
as boundary conditions at the interface between regions A and B, which can be called the
Stokes inlet, rather than in the entire Stokes region (A). The coe�cients and the prescribed
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analytical boundary conditions at the Stokes inlet are updated at each outer iteration. The
under-relaxation method is applied in the iterative calculation of the coe�cients to ensure
good convergence, which can be expressed as follows:

A(l+1)�k
=A(l)�k

+ ��[A
(l+1)
�k

− A(l)�k
] (28)

where l is the outer iteration number and �� is the under-relaxation factor corresponding to
the dependent variables �=U ∗; V ∗ and P∗.
Total convergence, both for the numerical solution of the global �ow (convergence criterion

denoted by 	num) and for the coe�cients of the local solution (convergence criterion denoted by
	coe� ), is required before the numerical calculation stops. The local solution can be considered
as converged if the relative changes of all coe�cients during the iteration, namely

	coe� =

{
	Ak =

|A(l+1)�k
− A(l)�k

|
|A(l)�k

|+ 	
; k=1 : : : m; 	p0 =

|p(l+1)0 − p(l)0 |
|p(l)0 |+ 	

}
(29)

decrease to certain small levels, where 	=10−20 is a negligible positive value to avoid zero
denominators.
With the computational matching asymptotic strategy described above, the singularity at

the leading edge is completely avoided in the global numerical scheme. In principle, various
methods can be applied for the solution of Equation (24). However, an iterative Gauss–
Seidel method is preferred considering the fact that the lower-order terms are more important
than those of higher order. Numerical experiments indicate that the matching calculation is not
sensitive to the choice of ��. A value between 0.5 and 1.0 usually leads to good convergence.
In addition, calculations choosing U ∗ as the matching variable are found to provide the best
results both in convergence and accuracy for the present problem, although the matching
procedure can principally be based on each of the dependent variables or any combination of
them. A detailed discussion on this topic is provided in Section 6.4.
As an alternative to the least-square matching, the exact matching strategy, which solves

the same number of matching equations as the coe�cients, namely n=m+1 in Equation (22),
were applied in References [17, 19]. Nevertheless, we found that this method is not robust
since the convergence speed and the results can be very sensitive to the matching locations.

4. FINITE-VOLUME FLOW SOLVER

The numerical solution of the Navier–Stokes equations is based on the �nite-volume �ow
solver FASTEST-2D (see Reference [24]). The code employed a block-structured, boundary-
�tted non-orthogonal quadrilateral grid and a colocated arrangement of the variables as
described by Demird�zi�c and Peri�c [25]. The convection and di�usion contributions to the
�uxes are evaluated using a central di�erencing scheme of second-order accuracy (CDS).
For the convective part the CDS scheme is blended with the �rst-order upwind di�erencing
scheme (UDS) using the deferred-correction approach proposed by Khosla and Rubin [26].
Linearization is introduced in the discretization and solution procedure for the Navier–Stokes
equations. For the pressure calculation, a pressure-correction equation is derived from the
continuity equation (1) and the momentum equations (2), which is iteratively solved together
with the momentum equations following the SIMPLE algorithm proposed by Patankar and
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Spalding [27]. An incomplete LU factorization method by Stone [28], called the strong im-
plicit procedure (SIP), is used as the solver for the system of linearized algebraic equations.
A non-linear multi-grid scheme is applied for convergence acceleration (see, e.g. Reference
[29]). A local grid re�nement technique [30] is employed to achieve high local resolution
near the leading edge.

5. ERROR ANALYSIS

In the �ow region A, where the Stokes approximation (5) applies, the convection term of the
Navier–Stokes equations is negligible. Hence the discretization accuracy mainly depends on
the discretization schemes for the di�usion term (∇∗2Ũ∗) and the pressure gradient (∇∗P∗).
They are of second-order accuracy in space in the case of equidistant grids, as described in
Section 4. Denoting the numerical solution by �h and the exact solution by �, one has the
following general expression:

�h=�+ d�dis with d�dis =O(|�′′|h2) (30)

where d�dis is the discretization error, h is the grid size and |�′′| represents the absolute value
of the second-order derivative. Moreover, the relation between � and the local asymptotic
solution of the Stokes equations, denoted by �anal, can be written as follows:

�=�anal + d�exp + d�eq (31)

where d�exp represents the expansion error due to neglect of higher-order expansions and
d�eq represents the approximate equation error introduced by the Stokes approximation of the
Navier–Stokes equations, namely neglecting the convection term. Substituting Equation (31)
into Equation (30) leads to the following general expression:

�h=�anal + d�exp + d�eq + d�dis (32)

With reference to Equations (16)–(18), an asymptotic expansion �anal up to the eigenvalue
�m can be expressed as follows:

�anal =
m∑

k=1
r∗
0
�kf�

�k
(�) for �=U ∗ and V ∗ (33)

�anal =
m∑

k=1
r∗
0
�k−1f�

�k
(�) for �=P∗ (34)

where (r∗
0 ; �) are the polar co-ordinates at the centre of the CV under consideration. Hence

the expansion error is obvious:

d�exp =O(r∗
0
�m+1); �=U ∗ and V ∗; d�exp =O(r∗

0
�m+1−1); �=P∗ (35)

As a good approximation, |�′′| can be evaluated based on �anal. Hence we have

d�dis ≈ |�′′
anal|h2 =O(r∗

0
�1−2h2) for �=U ∗; V ∗ (36)

d�dis ≈ |�′′
anal|h2 =O(r∗

0
�1−3h2) for �=P∗ (37)
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The approximate equation error d�eq can be estimated in the following way. Considering
two sets of solutions, (Ũ∗

N; P
∗
N ) for the incompressible Navier–Stokes equations and (Ũ

∗
S; P

∗
S )

for the Stokes approximation, d�eq is equal to Ũ∗
d = Ũ

∗
N − Ũ∗

S for the velocity vector and
P∗
d =P∗

N − P∗
S for the pressure, respectively. Subtracting Equation (2) by Equation (5) leads

to the following equation,

Ũ∗
N · ∇∗Ũ∗

N=−∇∗P∗
d +∇∗2Ũ∗

d (38)

In order to take the matching variable into account, we distinguish the N-S solutions between
velocity matching (Ũ∗

U; P
∗
U ) and pressure matching (Ũ

∗
P; P

∗
P ). In the former case one assumes

Ũ∗
U= Ũ

∗
S. Hence Equation (38) turns out to be

∇∗(P∗
U − P∗

S)=−Ũ∗
S · ∇∗Ũ∗

S (39)

Or in a matching procedure based on P, namely assuming PP=PS , then one has

∇∗2(Ũ∗
P − Ũ∗

S)= Ũ
∗
P · ∇∗Ũ∗

P ≈ Ũ∗
S · ∇∗Ũ∗

S (40)

Hence irrespective of the matching variable (if the Stokes solution is known), we obtain
the following estimation for the order of the error due to the Stokes �ow approximation:

∇∗2Ũ∗
d ∼ ∇∗P∗

d ≈ Ũ∗
S · ∇∗Ũ∗

S (41)

As an approximation, Ũ∗
S in the above equations can be evaluated based on the asymptotic

solution of the Stokes equations, �anal. Then the following estimation for the approximate
equation error d�eq can be obtained:

d�eq =O(r∗
0
2�1+1); �=U ∗ and V ∗ (42)

d�eq =O(r∗
0
2�1); �=P∗ (43)

In practice, one has to determine the coe�cients of the local expansion by the matching
algorithm. Equations (42) and (43) indicate that the approximate equation error of the pressure
is larger than that of the velocity �eld. Hence it is advantageous to determine the unknown
coe�cients of the Stokes �ow expansion based on the velocity matching. A detailed discussion
is given in Section 6.4.
Based on the above analysis, the general error expression (32) can be rewritten as

�h =�anal +O(r∗
0
�1−2 h2︸ ︷︷ ︸
d�dis

; r∗
0
2�1+1︸ ︷︷ ︸
d�eq

; r∗
0
�m+1︸ ︷︷ ︸

d�exp

); �=U ∗ and V ∗ (44)

�h =�anal +O(r∗
0
�1−3 h2︸ ︷︷ ︸
d�dis

; r∗
0
2�1︸︷︷︸

d�eq

; r∗
0
�m+1−1︸ ︷︷ ︸
d�exp

); �=P∗ (45)

where �1 = 1
2 for the leading edge.
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The above equations show that the accuracy of the numerical results depends on the
radial distance of the matching location from the singular point r∗

0 , the grid size h, and
the leading-order eigenvalue �1, as well as the order of the local expansion �m+1. It is
interesting to note from Equations (44) and (45) that even using a second-order accurate
discretization, the numerical solution �h has a maximum accuracy of the order of h1=2 for
�=U ∗ and V ∗ and diverges at an order of h−1=2 for �=P∗ at the location r∗

0 = h. For
this reason, a numerical algorithm solely based on a �nite-discretization scheme fails to pro-
duce an accurate solution in the region close to angular singularities if no special treatment
as in the present study is applied. In comparison, the second-order accuracy of the �nite-
discretization scheme is preserved in the outer �ow region where r∗

0
�1−36C (C represents a

constant).
The above analysis also indicates that the matching asymptotic algorithm loses its advan-

tage with respect to the accuracy if the matching CVs are located very close to the angu-
lar point, i.e. r∗

0 ≈ h, as done in some previous studies. With reference to Equations (44)
and (45), an optimal accuracy can be achieved for the numerical solution in the critical re-
gion by choosing matching locations (r∗

0 ) and the mesh size (h) such that the discretization
error d�dis is of the same level as the approximate equation error d�eq while the condition
of the Stokes approximation [Equation (11)] is to be satis�ed. In addition, a local expan-
sion leading to the same order of expansion error as d�eq can be recommended. Although
higher-order coe�cients can in principle be obtained from the matching solution, they are not
accurate.
In order to make a quantitative evaluation of the accuracy of the numerical results from the

matching asymptotic computation, a quantity called the matching residual 
� is introduced. It
is de�ned as the mean-square deviation between �h and �anal, namely


�=
1
n

n∑
i=1
[�h(i)− �anal(i)]2 (46)

where n is the number of the control points used for the residual evaluation and �=
U ∗; V ∗ and P∗.
With reference to Equations (44) and (45), one has the following residual estimations:


U;V ∼ O(r∗
0
2�1−4h4; r∗

0
4�1+2; r∗

0
2�m+1) (47)


P ∼ O(r∗
0
2�1−6h4; r∗

0
4�1 ; r∗

0
2�m+1−2) (48)

It is worth pointing out that the asymptotic solution �anal for the Stokes �ow is used for the
calculation of the matching residuals (47) and (48) due to the fact that the exact solution �
is unknown. Thus the discretization, expansion and approximate equation errors both at the
control points and at the matching locations contribute to the matching residual. Nevertheless,
since �anal is only involved in the matching asymptotic computation at the Stokes inlet and
the matching locations, only this part of the expansion and approximate equation errors have
an e�ect on the accuracy of the numerical results.
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6. NUMERICAL EXPERIMENTS

A number of numerical experiments were carried out in order to make the matching asymptotic
algorithm robust, reliable and to examine the accuracy. The e�ects of di�erent factors of
implementation such as the variable on which the matching procedure is based, the location
and the number of matching points, the order of the local expansion, the di�erencing scheme,
and the grid resolution were systematically investigated. Analyses were performed for the
grid-convergence rate of the local solution based on the numerical results of the coe�cients
obtained at varying multi-grid levels. Most of the numerical experiments were performed
using the UDS discretization (for the convection term) for the purpose of faster convergence.
Nevertheless, the numerical results of the local �ow were still found to have a second-order
convergence rate (refer to Section 6.5). Test calculations using the CDS scheme (only at the
�nest grid level) were also carried out for comparison. The matching residual (46), which
is a useful indicator for the accuracy of the matching asymptotic calculation, was evaluated
over a control region (window).
Furthermore, the convergence speed was examined. In the numerical experiments, conver-

gence was assumed to be satis�ed when the change of the coe�cients of the local solution
decreased to 	coe� = 	Ak¡5 × 10−7 for k=1 − 3 and 	coe� = 	Ak¡5 × 10−6 for k¿3 (refer
to Equation (29)). Additionally, to assure convergence the maximum sum of the normalized
absolute residuals in all equations 	num within the numerical solution of the global �ow has
to be reduced by six orders of magnitude. These criteria were proved to be safe. The corre-
sponding convergence history for a case applying a local solution containing six expansion
terms (Equations (16) and (17)), choosing U ∗ as the matching variable, and applying region
matching is displayed in Figure 3.

iteration

ε n
u

m
 ε co

ef
f

1000 2000 3000 4000

10-1

10-2
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10-5

10-6

10-7

10-8

10-9

10-10

εnum
εp0
εA1
εA2
εA3
εA4
εA5
εA6

Figure 3. Convergence history of the numerical solution of the global �ow 	num and the
coe�cients of the local expansions 	coe� using region matching. The convergence criteria

correspond to the values de�ned above.
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Since the matching asymptotic algorithm is based on the iterative solution of the global
�ow, a jump is observed both for the change of the coe�cients 	coe� and the residual of
the global numerical solution 	num at the shift of multi-grid levels during the computation.
The relative change of the leading coe�cient 	A1 decreases most rapidly in all cases. This is
an implied advantage of the sequential algorithm described in Section 3 and is ideal for a
matching asymptotic calculation.
The numerical experiments served as a rigorous validation both for the matching asymptotic

algorithm and for the error analysis of Section 5. Here only a small part of the results are
presented. For a systematic presentation of all results from a complete set of test cases we
refer to Reference [23].

6.1. Computational domain, boundary conditions and numerical grids

The computational domain and the boundary conditions are shown in Figure 4. All computa-
tions were carried out for the Reynolds number ReL =L∗=U∞ L=�=1:6× 105, based on the
in�ow velocity (U∞) and the length of the plate located in the computational domain (L).
This Reynolds number ensures that the boundary-layer �ow is fully developed at the outlet.
Hence the Blasius solution can be applied as boundary condition at a part of the outlet. On
the other hand, this value is still much smaller than the lower limit of the critical Reynolds
number of transition, namely Recrit = 3:2×105 according to Schlichting [31]. In order to reduce
the in�uence of the boundary condition on the numerical solution in the region of interest,
a large domain height, B∗=2 × 104, was chosen. This corresponds to 100 times the non-
dimensional boundary-layer thickness at x∗=L∗, namely 
∗

L =5=Re
1=2
L . For the same reason,

the computational domain was extended to L∗
f=0:2L

∗ upstream from the leading edge.
The �ow was assumed to be undisturbed at the inlet and at that part of the upper boundary

upstream of the �at plate (U ∗=1 and V ∗=0). At the lateral boundary and at the out�ow
plane a fully developed �ow (@�=@y=0, �=U ∗; V ∗ and P∗) was assumed except in the
near-wall region which was approximated by the Blasius solution as mentioned above. For the
boundary in front of the leading edge, symmetry conditions are applied, namely @U ∗=@y∗=0
and V ∗=0. At the wall no-slip boundary conditions (U ∗=0 and V ∗=0) are used. Finally,
the local asymptotic solutions (16) and (17) were assigned at the Stokes inlet.

Figure 4. Sketch of the computational domain and boundary conditions.
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Figure 5. Numerical grid of the matching region, shown for CV centres at the �rst (coarsest) grid level.

The numerical grids consist of �ve multi-grid levels and contain 2240 CVs on the �rst
(coarsest) grid level leading to about 5:8× 105 CVs on the �nest level. Local grid re�nement
was applied to obtain an extremely �ne grid resolution in the region of interest. A zoomed
view of the numerical grid around the leading edge is depicted in Figure 5. The Stokes inlet
was set at r∗=0:015. The CVs used for the matching of the numerical and analytical solutions
were located in the block closest to the leading edge, which has a size of 0:0156r∗60:15. In
this block, 10 equidistant grid points were applied at the Stokes inlet (in the i direction, i.e.
tangential direction) and eight grid points, whose intervals were expanded by a power of 1.3,
were used in the j direction (radial direction). The minimum grid size is 	r∗=7:7 × 10−3

at the �rst grid level and 	r∗=4× 10−4 at the �fth grid level. In comparison, much coarser
grid resolutions were applied to the �ow region far away from the leading edge and outside
the boundary layer in order to achieve e�cient calculations for the �ow of interest. For this
reason, convergence can only be obtained at the �nest grid level for calculations using the
CDS scheme.

6.2. In�uence of the matching location and matching points

Adopting the least-square matching strategy one needs much more matching CVs than the
number of coe�cients of the local solution. Hence, it is worth investigating how many match-
ing CVs are necessary for a reliable least-square matching. The location of the matching CVs
is also of importance for the accuracy of the numerical results as indicated by the error anal-
ysis in Section 5. In order to obtain reliable matching computations and to be con�dent about
the numerical accuracy, a number of numerical experiments using varying numbers (n) and
locations of matching CVs were carried out. The case where the matching CVs are located
along a grid line is denoted line matching while the case when the matching CVs are dis-
tributed in a zone is called region matching. In all test cases, the distance of the matching
CVs from the leading edge are within a range 0:015¡r∗

0 ¡0:1. Matching grid lines along
both i and j directions and matching zones of di�erent sizes were tested. Here, we present
the results from two representative cases, whose matching locations are sketched in Figure 6.
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matching
line

region
matching

Figure 6. Sketch of two characteristic matching locations for line matching (r∗
0 = 0:03, n=146 CVs on

�fth grid level) and region matching (0:036r∗
0 60:09, n=1073 CVs on �fth grid level).

Table I. Comparisons of the coe�cients of the local solution determined by the line-matching and
region-matching strategy; grid convergence rate estimated by pk ; Richardson extrapolation applied to
drop the discretization error in Ai; computations based on a local asymptotic solution containing the �rst

three expansion terms (m=3) in Equations (16)–(18).

k p0 A1 pk A2 pk A3 pk

Line matching
1 −0:17695370 0.20600677 0.11401301 0.75431480
2 0.11940396 0.19314444 2.81705849E-02 0.14676585
3 0.13949590 0.19001189 2.04 5.53510530E-03 1.92 1.01310592E-02 2.15
4 0.13704437 0.18982919 4.10 3.87060966E-03 3.77 4.07408741E-03 4.50
5 0.13473557 0.18979424 2.39 3.42530042E-03 1.90 2.85725575E-03 2.32
extrapolation 0.18979 3.2769E-03 2.5531E-03

Region matching
1 0.12631758 0.19180704 3.08230814E-02 5.21052431E-02
2 0.14617762 0.19011551 7.14135036E-03 1.18953485E-02
3 0.14135558 0.18987562 2.82 4.75805710E-03 3.31 6.97434251E-03 3.03
4 0.13736588 0.18982849 2.35 4.08442989E-03 1.82 5.42922803E-03 1.67
5 0.13484245 0.18981582 1.90 3.82425261E-03 1.37 4.83244282E-03 1.37
extrapolation 0.18981 3.6619E-03 4.4604E-03

In both tests, a local solution containing three expansion terms (m=3) was applied and U ∗

was chosen as the matching variable. For a complete set of results refer to Reference [23].

6.2.1. Results for coe�cients. The numerical results of both test cases for the coe�cients
of the local solutions (16)–(18) (p0 and Ai) are displayed in Table I. The grid convergence
rates pk of the coe�cients Ai were also analysed based on the numerical results at successive
multi-grid levels k (see Reference [32]). Based on the grid convergence rate pk obtained,
Richardson extrapolation was applied for the coe�cients Ai in order to drop the discretization
error. The results obtained for pk and the extrapolated Ai are also presented.
The coe�cients of the leading expansion A1, calculated from di�erent test cases are very

close to each other, with a maximum di�erence of about 4 × 10−4 absolute or 0.2% rel-
ative. In addition, it can be concluded that A1 increases with decreasing distance (r∗

0 ) of
the matching CVs from the leading edge. The deviations in A2 begin from the second dec-
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imal number. Nevertheless, since A2 is two orders of magnitude smaller than A1 and since
r∗
0 ¡0:1 in all cases, the in�uence of these deviations on the local solution is expected to
be one order of magnitude smaller than the error caused by the deviations in A1. It is noted
that the results for A3 obtained by the line matching strategy di�er signi�cantly from those
obtained with region matching. The results indicate that A3 is of the order O(10−3), but a
closer evaluation is impossible. A comparison of the third and the �rst expansion terms gives
A3r∗

0
2=A1r∗

0
0:5 = (A3=A1)r∗

0
1:5 ∼O(10−3:5) (refer to Equation (16)), which is already smaller than

the relative deviations of A1. That explains the reason.
With reference to Equation (30), the discretization accuracy for the Stokes �ow is of the

order O(r∗
0

−1:5h2). Hence �xing r∗
0 , the coe�cients Ai are expected to have a second-order

grid convergence rate (pk) as supported by the numerical results of the line-matching strategy.
The grid convergence rate was found to decrease with increasing r∗

0 . This is not due to the
increasing in�uence of the convective term (�rst-order UDS discretization) at the matching
locations of this case in view of the error analysis (Equations (44) and (45)). The real cause
might be that the larger expansion error [O(r∗

0
2:5)] dominates over the discretization error

[O(r∗
0

−1:5h2)] in this case, as indicated by the quantitative error estimations [23]. As a result,
the discretization accuracy is partially destroyed.
It is not possible to perform grid-convergence analysis for p0, since the change of the

results at varying grid levels is not always monotonic. This might be due to the variation of
the pressure reference point at di�erent grid levels. Nevertheless, the pressure gradient rather
than the pressure itself is relevant for the velocity �eld. Hence, a change of the pressure
reference point at di�erent grid levels is not a critical issue for the numerical solution. In
addition, p0 is passive and does not have an in�uence on the coe�cients Ai since a matching
procedure based on U ∗ was adopted (refer to Section 3).
It was observed that a matching asymptotic calculation using the line matching sometimes

failed to converge or the coe�cients converged to wrong values. In contrast, the region
matching was found to be robust. In practice, it might occur that some terms of the local
solution can happen to be zero along a matching grid line or the solution is disturbed at
a matching location. In these cases a computation adopting the exact matching strategy or
the least-square matching strategy but based on a line matching can fail. For this reason we
recommend the least-square region-matching strategy.

6.2.2. Matching residuals. The matching residuals (46) of the above test cases, which were
evaluated over the matching CVs of the region-matching case, are presented in Table II. It is
found that 
U∗ and 
V∗ decrease monotonically with decreasing grid size (or increasing grid
level k) and that at the �fth grid level 
V∗ is about 10−3
U∗ in all computations. Moreover,

U∗ and 
V∗ are much higher in the case of region matching than those of line matching.
The grid size varies from 4:0×10−4 to 1:7×10−3 in the maximum range (0:015¡r0∗¡0:1)

of the matching locations of all test cases and the control region for the residual evaluation.
Based on this information, the matching residual is expected to be about O(10−8)−O(10−10)
for 
U∗ ;V∗ and about O(10−4) − O(10−6) for 
P∗ according to the error estimation (47)
and (48). Hence the present matching residuals for all variables are reasonably low.
It is noted that 
P∗ remains of the same order from the fourth to the �fth grid level.

This indicates that the e�ect of the grid size is negligible and thus 
P∗ is dominated by
the approximate equation error [O(r∗

0
2)] rather than by the discretization error [O(r∗

0
−5 h4)].

Such behavior is also observed for 
U∗ for the cases adopting the region matching and the
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Table II. Comparisons of the residual of the global solution and the matching residuals (46) calculated
based on the line- and region-matching strategy, where k represents the grid level and n denotes the
number of the matching points. Computations were based on a local asymptotic solution containing

the �rst three expansion terms (m=3) of Equations (16)–(18).

k n 	num 
U 
V 
P

Line matching
1 12 4.65362727E-08 9.43298536E-07 7.86082114E-08 5.75094931E-02
2 22 4.39171718E-07 9.21452707E-07 3.07150902E-08 2.79299940E-03
3 38 9.40864449E-08 2.53334315E-09 3.16667893E-11 1.03779353E-07
4 74 9.47255890E-08 1.09789159E-10 3.85225118E-13 2.46695226E-06
5 146 9.85809260E-08 4.85673107E-12 4.52631041E-15 3.37869764E-06

Region matching
1 9 9.93673865E-08 1.75927331E-07 1.46606109E-08 6.34994887E-04
2 30 4.39171732E-07 1.73848021E-06 5.79493404E-08 3.90252379E-06
3 80 9.93241293E-08 2.65106532E-07 3.31383165E-09 1.28747030E-06
4 285 9.63074901E-08 1.38359968E-07 4.85473573E-10 9.63960743E-07
5 1073 9.86387180E-08 1.06415672E-07 9.91758362E-11 9.59728956E-07

Figure 7. Comparison of the numerical solution (N-S equations, dashed) and the analytical solution
(Stokes equations, dotted) for the �ow close to the leading edge obtained by region matching; displayed

for the isolines of: (a) U∗; (b) V ∗; and (c) P∗.

line matching at the location r0∗ ≈ 0:09. Consequently, the results from the above numerical
experiments support the error estimation (47) and (48). In addition, it is observed that 
V∗ is
smaller than 
U∗ . Nevertheless, the regular relation between both residuals (
V∗ ≈ 10−3
U∗)
might be related to some speci�c feature of the �ow in the present problem.
In contrast to the signi�cant e�ect of the matching location, the number of matching CVs

does not show an important in�uence on the matching asymptotic calculation. The minimum
number in all test cases (partially not shown here) was n=74 at the �fth grid level.

6.2.3. Range of validity of the local solution. It is of interest to examine the range of validity
of the Stokes approximation. For this purpose, the numerical solution (�h, N-S equations) and
the analytical solution (�anal, Stokes equations) based on the coe�cients determined by the
matching procedure in the �ow �eld close to the leading edge were compared. As an example,
the isolines of the velocity components and pressure distribution based on both solutions using
region matching are depicted in Figure 7 for the region of interest. The results indicate that
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Figure 8. Examination of the range of validity of the Stokes solutions based on the coe�cients obtained
by line matching (dashed) and region matching (dotted) by comparison with the numerical solution of
the combined analytical–numerical method using region matching (N-S equations, solid); displayed for

the isolines of: (a) U∗; (b) V ∗; and (c) P∗.

both solutions agree very well with each other at least up to r∗
060:15, which is already

beyond the range of the matching region of all cases. Consequently, the present computations
are reliable.
Furthermore, it is of interest to �nd out which matching strategy provides more accurate

results. The answer becomes clear from a comparison of the range of validity of the analytical
solutions based on the coe�cients obtained by both strategies. For that purpose, Figure 8
displays isolines for the velocity and pressure distributions obtained by the analytical solutions
of the line-matching case and the region-matching case together with the numerical solution
of the combined analytical–numerical method using region matching. Consequently, the Stokes
solution using the coe�cients of the line-matching case has a larger range of agreement with
the numerical solution than that based on the coe�cients of the region-matching case. This
is consistent with the matching residuals discussed above, and is due to the smaller distance
of the matching CVs from the leading edge in the former case.

6.3. In�uence of the expansion order

Numerical experiments were carried out by using a local solution including varying number
of terms (m=1; 2; 3; 4 and 6) in order to investigate the e�ect of the local expansion order.
Again U ∗ was chosen as the matching variable and the investigations were done both for line
and region matching. For reference, Figure 9 displays the isolines of the velocity components
and the pressure predicted by line matching with expansion terms of m=1; 3 and 6. It is
again noted that the coe�cients of the leading expansion A1 are very close to each other
in all computations, with the maximum deviation being less than 0.1% for line matching
and 0.04% for region matching. The deviations in the coe�cients of the higher-order terms
are larger. Nevertheless, the errors due to that are within the magnitude resulting from the
deviations of the leading expansion, owing to the small magnitude of the higher-order terms.
Owing to this fact, although converged results can be obtained for the coe�cients of higher-
order expansions, they are not accurate. On the other hand, the numerical results show that
the higher-order terms are useful for reducing the matching residuals and for improving the
grid convergence rate of the lower-order coe�cients.
Additionally, it is noted that 
P∗ is dominated by r0∗ in all computations. This is also true

for the results for 
U∗ in the line-matching case if lower-order expansions (m=1 and 2) were
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Figure 9. Numerical results for the �ow close to the leading edge using line matching. Comparison of
the e�ect of the expansion order: Stokes solutions with m=1 (dash–dotted), m=3 (dashed), m=6

(dotted) and numerical (N-S) solution (solid): (a) U∗; (b) V ∗; and (c) P∗.

applied and in the region-matching case for all orders of expansions (up to m=6). A detailed
analysis [23] con�rm that the reason for this behavior is due to the dominant expansion errors
in these cases using the present grid (h) and matching locations (r∗

0 ). As a consequence, it
is useful to improve the numerical accuracy by moving the matching locations closer to the
singular point. The analysis also shows that the magnitudes of the matching residuals at the
�fth grid level are reasonable with reference to the error estimations (44) and (45).
It is worth mentioning the test cases with m=4 and 6. The convergence of the line-

matching case is found to be much slower than that of region matching. Furthermore, it is
found that in the case of using the full expansion given by Equations (16)–(18), i.e. m=6,
	A4 remains larger than 	A5 and 	A6 in the process of the iterative solution at the �fth grid level.
This slows down the convergence of the coe�cients of the higher-order terms. These results
con�rm again that the region-matching strategy is more robust than the line-matching strategy.
Moreover, it is worth noting that the fourth expansion term has a higher order (�4 = 2:5) than
that of the approximate equation error d�eq (2�1 + 1=2). As pointed out in Section 5, the
coe�cient of this term or even higher-order terms might be inaccurate.

6.4. In�uence of matching variable

As mentioned in Section 3, a matching asymptotic computation can be based on each of
the dependent variables, U ∗; V ∗ or P∗, or any combination of them, considering that the
local solution (16)–(18) involves the same coe�cients (A�i). Nevertheless, the numerical
experiments indicate that the matching variable has an important in�uence on the accuracy
and properties of convergence. For example, according to the error estimations (44) and (45),
the numerical accuracy of P∗ is expected to be one order of magnitude lower with respect
to r0∗ than that of the velocity components. Thus the disadvantage of choosing P∗ as the
matching variable is clear. In addition to the lower accuracy, a matching calculation based
on P∗ failed to converge if the multi-grid method was applied. This is related to the large
pressure adjustments occurring during shifts of the grid levels. As pointed out in Section 3,
p0 is not passive in this case, and a pressure change will result in large disturbances in the
velocity assigned at the Stokes inlet and thus lead to divergence of the computation.
Di�erences were also observed between computations based on matching for U ∗ and V ∗. To

demonstrate this e�ect, numerical experiments based on both matching variables and using
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Figure 10. Comparison of the Stokes solution based on the coe�cients obtained from U∗ matching
(dashed) and from V ∗ matching (dotted) with the numerical solution of the Navier–Stokes equations
(solid) for the �ow close to the leading edge; displayed for the isolines of U∗ (left) and V ∗ (right)

for the line-matching case (r∗
0 ≈ 0:03) with m=2.

both line and region matching were carried out. The results (not displayed here, refer to
Reference [23]) show that the grid convergence rate of the coe�cients from computations
based on V ∗ as the matching variable are less regular than those obtained by matching for
U ∗. The results for the matching residuals also indicate that the performance of V ∗ matching
was generally worse than that of U ∗ matching. Furthermore, slower convergence or even
divergence was more often observed in the line-matching case when V ∗ was chosen as the
matching variable. Therefore, it can be concluded that the matching variable has an important
in�uence on the matching asymptotic computation. However, there is no reason to conclude
that it is generally of advantage to choose U ∗ as the matching variable. The better performance
in the case of matching for U ∗ observed in the present study should be related to the special
�ow features of the present problem. In addition, the Stokes solution with the coe�cients
computed based on both matching variables agree well with the numerical solution (N-S) at
least in the range r∗

060:1, which is demonstrated by the isolines of U ∗ and V ∗ depicted in
Figure 10.

6.5. In�uence of the di�erencing scheme

Finally, it is also interesting to make an examination on the in�uence of the di�erencing
scheme. For this purpose, several numerical experiments were carried out using the second-
order CDS discretization for the convective terms. This scheme was only applied at the �fth
grid level considering the convergence di�culty at coarser grid levels due to the large grid
sizes in the �ow region out of interest. A comparison of the numerical results for the cor-
responding coe�cients with those obtained by applying the UDS discretization (convective
terms) was carried out. In both cases the di�usion terms were discretized by the second-order
accurate CDS scheme. It is found that the di�erence in the results obtained using the two
di�erent schemes for the convective terms is negligible. This is due to the fact that the convec-
tive terms of the N–S equations can be neglected near the leading edge where Equation (11)
is satis�ed. Consequently, the application of modern high-order formulations such as compact
schemes will lead to the same conclusion. However, the e�ect of the di�erencing scheme on
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the pressure and di�usion terms is not expected to be negligible, as indicated by the error
analysis described in Section 5.

6.6. Numerical solution with local grid re�nement

For comparison, purely numerical simulations without using the matched asymptotic algorithm
were also carried out. In this case, the computational domain was decomposed into 49 rect-
angular blocks. The grids were highly re�ned for those blocks located in the proximity of the
leading edge and in the boundary layer of the plate, which results in a �nest grid resolution
	 x∗=0:001 at the �nest (�fth) grid level. In order to demonstrate the grid convergence e�ect
of the local grid re�nement, comparisons of the solutions at the third and �fth grid levels
were done. The results show that the numerical solutions of the velocity components (U ∗ and
V ∗) converge with �ner numerical grids, except for some disturbances at the direct neighbour
CVs of the leading edge. In contrast, the solution of the pressure diverges and the solution
cannot be improved by means of local grid re�nement. Therefore, the above results con�rm
the results of the error analysis, namely Equations (44) and (45).

7. PHYSICAL ANALYSIS AND DISCUSSION

Finally, the physical features of the incompressible laminar �ow past a semi-in�nite �at plate
such as the drag coe�cients, the development of the boundary layer over the plate, and the
�ow �eld around the leading edge, will be discussed. In order to draw reliable conclusions
from the study, the discussion is based on the numerical results obtained by using the second-
order accurate CDS discretization for the convection term.

7.1. Results for the �ow �eld

The isolines of the velocity components and the vorticity of the �ow in the range of distance
r∗
0610 from the leading edge are demonstrated in Figure 11(a)–11(c). In order to have a
clearer picture of the �ow around the leading edge, the results of the stream function are also
presented in Figure 11(d). Owing to the no-slip e�ect of the wall, it is observed in this �gure
that the �ow displaces away from the wall in the y direction. Nevertheless, the displacement
already starts upstream of the leading edge rather than at the leading edge itself as assumed
in the Blasius solution. This �ow displacement results in a small �ow region close to the
leading edge where V ∗ reaches the maximum value of the total �ow �eld [Figure 11(b)].
The Stokes �ow in the direct neighbourhood of the leading edge is dominated by di�usion

(governed by elliptic equations). For this reason, it is observed that the magnitudes of @U ∗=@x∗

and @U ∗=@y∗ are close to each other upstream of the leading edge. Figure 11 indicates that
the di�usion e�ect is still important in the �ow region r∗

0610. Despite the rapid decay of
!∗ in the upstream direction, both @U ∗=@x∗ and V ∗ are still of considerable signi�cance in
this region. Furthermore, it can be noted that @!∗=@y∗¡0 at the wall (x∗¿0; y∗=0). This
result is similar to that of Botta and Dijkstra [8], which was also obtained based on the
Navier–Stokes equations. This non-zero gradient, @!∗=@y∗|x∗¿0;y∗=0, physically corresponds
to a vorticity production at the wall. In contrast, it is assumed that @!∗=@y∗ vanishes at the
wall in the Blasius solution. As a result, the entire vorticity production has to be sought at
the leading edge in the boundary layer theory. The above results are su�cient to show that

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:659–688



A COMBINED ANALYTICAL–NUMERICAL METHOD 681

Figure 11. Laminar incompressible �ow close to the leading edge of a semi-in�nite plate; isolines of
U∗ (a), V ∗ (b) and !∗ (c) for −106r∗

0 610; stream function for −0:1256r∗
0 60:125 (d).

boundary layer theories of varying orders (parabolic assumption) do not apply to the �ow
region close to the leading edge. From this point of view, some classical analytical work
in the literature, which represent the e�orts to take the leading-edge e�ect into account by
developing higher-order boundary layer theories [33] or to solve the �ow near the leading
edge by matching the Stokes solution to the Blasius solution [1], are not physically justi�ed.
The predicted �ow �eld shows that the in�uence of the plate (di�usion e�ect) extends far
away from the Blasius boundary layer both in the y direction and in the negative x direction.

7.2. Development of the boundary layer �ow

The velocity pro�les displayed in Figure 12 provide a picture for the development of the
boundary layer �ow over the semi-in�nite �at plate. The results are presented for the simi-
larity variables following the Blasius solution, namely U ∗ (=U=U∞) vs � and V ∗Re1=2x vs �,
respectively. Here � is de�ned as �=y

√
U∞=(�x)=y∗=

√
x∗. The results of the Blasius solu-

tion are also plotted for comparison. Signi�cant deviations exist between the present velocity
pro�les and those according to the similarity solution of Blasius for fully developed boundary
layer �ow, especially at x∗=Rex6100. The latter is obtained from the simpli�ed Navier–
Stokes equations based on perturbations for Rex → ∞. At Rex¿1000, the Blasius solution
becomes a good approximation, as evident in Figure 12.
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Figure 12. Development of the velocity pro�les U∗ vs � and V ∗Re1=2x vs � of the incompressible
laminar �ow over a semi-in�nite �at plate.

7.3. Local skin friction

7.3.1. Results near the leading edge. At Rex → 0, the local skin friction cf at a �at plate can
be well estimated from the local analysis of the Stokes �ow given by Equation (20). As an
example, the results for the line-matching case with a varying number of expansion terms
are displayed in Figure 13. As expected, all results based on the Stokes approximation agree
very well with each other and with the numerical solution of the Navier–Stokes equations at
Rex60:1. This is due to the fact that the leading-order term is dominant in Equation (20).
For example, the ratio of the second to the �rst term of Equation (20) is equal to 3A2=A1Rex,
which is expected to be less than 0:7% at Rex60:1 according to the results of the coe�cients.
The higher-order terms decay even more rapidly when Rex → 0, and hence are trivial.
It is interesting to note in Figure 13 that the skin friction resulting from the leading

expansion of the Stokes equations (m=1) agrees fairly well with the numerical results of
the Navier–Stokes equations in the entire range up to Rex=10. This is due to the dominant
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Figure 13. Comparison of the Stokes �ow approximation (20) of varying expansion orders and the
numerical results of the Navier–Stokes equations for the local skin friction cf around the leading

edge of a semi-in�nite �at plate displayed for the line-matching case.

viscous e�ect close to the wall surface (small y∗). No signi�cant extension is observed for
the validity range of the Stokes approximation for the skin friction result (20) in the case
when higher-order terms are involved. However, their agreement with the numerical results
of the full Navier–Stokes equations at Rex → 0 is improved, as discussed in Section 6.3.
It is worth pointing out that Equation (20) di�ers from the local asymptotic solution by

Carrier and Lin [1] in the higher-order terms, e.g. the third term in their relation which is
O(Re1x) compared with O(Re3=2x ) in Equation (20). This is a result of the di�erent asymptotic
solutions used in the present study and by Carrier and Lin [1]. Nevertheless, both solutions
are acceptable considering that the higher-order terms are negligible at Rex → 0. Therefore, it
is already su�ciently accurate to consider the �rst two terms of Equation (20) for cf at the
leading edge, namely

cf=ARex−1=2 + BRex1=2 + · · · (49)

where A= limRex→0(cfRe
1=2
x ) is dominant according to the quantitative evaluation discussed

above.
A comparison of the present results (line matching with 26m64) for A and B with those

available in the literature is summarized in Table III. It is noted that the in�uence of the
expansion order m on the leading coe�cient A is small. The present results for this coe�cient
agree very well with the value calculated by Botta and Dijkstra [8], with a di�erence being
less than 0.6%. In comparison, the result from the Blasius solution is about 12.5% smaller
than the present values.
In contrast to A, the results obtained for B (=12A2) vary in a wider range with varying

expansion orders m. Nevertheless, the e�ect of this variation on the skin friction is not of
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Table III. Comparison of the skin friction coe�cients at the leading edge with the
literature; a dash means that this value was not given by the authors.

Author A= limRex→0 (cfRe
1=2
x ) B

Blasius solution 0.664 0
Lewis and Carrier [34] 1.128 —
Dean [35] 0.796 —
Davies [36] 0.779 —
Yoshizawa [37] 0.748 0.044
Botta and Dijkstra [8] 0.75475 0.041
Present result (26m64) 0.75888–0.75916 0.03382–0.03932

Rex

C
f

101

100

10-1

10-2

10-3 10-2 10-1 100 101 102 103

N-S, matching, numer.
Stokes, matching, anal.
N-S, LBR, grid 3
N-S, LBR, grid 5
Blasius solution
Third-order BL Th., C1=2.4
Third-order BL Th., C1=1.6

Figure 14. Comparison of the present results for the local skin friction cf obtained from the matching
asymptotic calculations with those obtained by local block re�nement and the classical results from

di�erent boundary layer theories.

signi�cance, considering that the total contribution of the second term is minor at Rex60:1,
according to the quantitative evaluation discussed above.

7.3.2. Comparison with boundary layer theories. A comparison of the present results with
the Blasius solution and the result from the third-order boundary layer approximation due to
Goldstein [38] and Imai [33] is demonstrated in Figure 14. The latter one yields the following
results for the local skin friction coe�cient:

cf ≈ 0:664Re−1=2
x + 0:551 log(Rex)Re−3=2

x + (C1 − 1)Re−3=2
x + · · · (50)

The results (on the third and �fth grid levels) obtained by the local block re�nement technique
(LBR) instead of using the matching asymptotic algorithm are also plotted for reference.
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Compared with the matching asymptotic computation, the LBR results are disturbed in the
range Rex60:1, even when a very �ne local grid resolution of Re	x=	x∗=10−3 at the
�fth grid level is used. This is due to the pollution e�ect of the leading-edge singularity.
Nevertheless, the di�erence between the results obtained from both calculations is negligible
for Rex¿1. Figure 14 shows that the Blasius solution underestimates the skin friction in the
range Rex¡1000. The di�erence between the Blasius solution and the present results decreases
with increasing Rex to a level within 1% at Rex¿1000. The skin friction resulting from the
third-order boundary layer approximation (Equation (50)) contains an undetermined coe�cient
C1. Its value was estimated to be 2:2¡C1¡2:5 and C1 ≈ 1:6 by the numerical solution of Botta
and Dijkstra [8] and Yoshizawa [37], respectively. The results plotted in Figure 14 are based
on C1 = 1:6 and 2.4. Comparison with the present results (N-S solution) indicates that the local
skin friction predicted by the third-order boundary layer approximation is valid for Reynolds
numbers down to Rex=100, with a deviation less than 1%. Compared with the validity range
of the Blasius solution, this improvement due to the third-order boundary layer approximation
is signi�cant.
Theoretically, C1 can also be estimated based on the present results for cf, leading to:

C1 = cfRe3=2x − 0:664Rex − 0:551 log(Rex) + 1 (51)

Nevertheless, one has to recall that the numerical error in cf will be enlarged by a factor
Re3=2x . Moreover, Equation (50) is only valid at Rex¿100, as shown in Figure 14. As a result,
a closer estimation is not available from the above method. For this reason, no further e�ort
to calculate C1 was made in the present study.

8. CONCLUSIONS

Angular singularities require special treatment in �ow predictions, since a �nite discretization
scheme looses local and global accuracy in the vicinity of angular points (sharp edges or
corners). Using a primitive variable formulation of the Navier–Stokes equations, this problem
is especially severe for the pressure, whose numerical solution diverges in the proximity of
angular singularities. In order to improve the accuracy of numerical predictions, a generally
applicable combined analytical–numerical treatment for angular singularities has been devel-
oped in the present work. The methodology is based on a computational matching asymptotic
algorithm taking advantage of the analytical (asymptotic) solution, which can be obtained for
the local Stokes �ow around an angular point. This procedure avoids the numerical solution
in this critical region. As a result, the �nite discretization is restricted to a regular domain
without perturbations and pollutions induced by singularities.
The local asymptotic solution applied involves unknown coe�cients. They are determined

by matching this solution to the numerical solution in the �ow region where the Stokes
approximation holds. A formal error analysis has been derived for this combined algorithm,
which serves as a useful guide for designing appropriate numerical grids for the practical
application. In order to make the entire algorithm robust and e�cient, numerical experiments
were carried out to investigate the e�ects of di�erent, more or less important in�uencing
factors on the numerical results, such as the matching location, the matching variable, the
order of asymptotic expansions and the di�erencing scheme (UDS or CDS), etc. Furthermore,
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the convergence properties of the matching asymptotic computation were determined. The
numerical experiments show the desirable properties of the present algorithm, i.e. accuracy,
robustness and e�ciency. Moreover, the results from the numerical experiments are in support
of the error estimations derived.
Based on this algorithm, accurate numerical results have been obtained for the �ow near

the leading edge and for the coe�cients of the local asymptotic solution. Physical analyses
were carried out for the results predicted and the validity of the boundary layer theory of
varying orders was examined. Based on these investigations, the following conclusions can
be drawn:

• Using a uniform grid size h, the numerical solution in the direct neighbourhood of an
angular point has a maximum accuracy of the order O(h�1) for the velocity �eld and
O(h�1−1) for the pressure, where �1 is the smallest positive eigenvalue depending on
the angle of the corner, if a discretization scheme of second-order accuracy is directly
applied. This corresponds to an accuracy of the order O(h1=2) for the velocity components
near the leading edge of a semi-in�nite plate whereas the pressure diverges at an order
of h−1=2 in the direct vicinity of the edge. This demonstrates that even applying modern
numerical techniques such as adaptive grids or local block re�nement as in the present
work is not an appropriate manner to tackle singularities.

• With the combined analytical–numerical algorithm, the accuracy of the numerical solution
around an angular point can be improved to the order O(r∗

0
�1−2h2, r∗

0
2�1+1, r∗

0
�m+1) for

the velocity components and O(r∗
0
�1−3h2; r∗

0
2�1 ; r∗

0
�m+1−1) for the pressure, where r∗

0 is the
radial distance from the matching location to the angular singularity.

• According to the present results for the velocity pro�le and the local skin friction, the
Blasius boundary layer solution can be considered as a good approximation for the
incompressible laminar �ow over a semi-in�nite �at plate at Rex¿1000. In comparison,
the range of validity of the local skin friction is extended to Rex¿100 using the third-
order boundary layer theory for the semi-in�nite plate.

• The present results show that the �ow close to the leading edge is dominated by di�usion
(elliptic equation). Hence boundary layer theories of any order, which are based on the
parabolic assumption, ceases to describe the physical e�ects reasonably and thus cannot
be applied. Compared with the present results, the local skin coe�cient according to the
Blasius solution is about 12.5% smaller at the leading edge (Rex → 0).

In conclusion, the combined analytical–numerical algorithm completely avoids the problems
caused by the leading-edge singularity leading to a much higher order of accuracy for the nu-
merical solution of the �ow in the critical region. Although this method was demonstrated for
the leading-edge singularity in the present study, it can directly be applied to deal with vari-
ous two-dimensional angular singularities and can also be extended to treat three-dimensional
problems. The treatment of the singularity proposed is local. Consequently, the algorithm is
not limited to any speci�c �nite-discretization scheme.
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